


Electric CurrentElectric current is the rate at which
electric charge moves. $I = \frac{q}{t}$ Units: Ampere, Amp, AThe direction of conventional current is
the direction that positive charge would
flow.• Although this is possible, it is usually the

Although this is possible, it is usually the electrons that move.

- As electrons move through a metal wire, they encounter obstacles such as other electrons, atoms, impurities, etc.
- The electrons scatter from these obstacles and lose energy with each interaction.
- A force, supplied by an electric field, is required to keep the electrons moving.
- Electrons, carrying a negative charge, move on average (or *drift*) in the direction opposite the electric field.

Resistance

- Electrical current in a wire can be slowed down by many factors.
 - impurities in the wire, collisions between the charges in the material, etc.
- These factors create a resistance to the electrical current.
- Resistance is a description of how much a wire or other electrical component opposes the flow of charge through it.

 In the 19th century, Georg Ohm (German, 1787–1854) found experimentally that current through a conductor is proportional to the voltage drop across a current-carrying conductor.

OpenStax, Rice University (CC BY 4.0)

 $I \propto V$

Credit: Archivist (Adobe Stock)

• The constant of proportionality is the resistance R of the material, which leads to

V = IR

- This relationship is called **Ohm's law**.
 - The units of resistance are V/A called an ohm (Ω).

- Ohm's law holds for most materials at common temperatures.
 - At very low temperatures, resistance may drop to zero (superconductivity).
 - At very high temperatures, the thermal motion of atoms in the material inhibits the flow of electrons, increasing the resistance.
 - The many substances for which Ohm's law holds are called ohmic.

Resistivity

- The resistivity of a material is a measure of how strongly a material opposes the flow of electrical current.
 - The resistivity of some materials has a strong temperature dependence.
- The resistance of a material depends on resistivity, length and cross-sectional area.

 $R = \rho \frac{L}{A}$